Press Release

MSE Research Reveals Unique Ionic Diffusion Mechanism in Super-Ionic Conductors

Mo, He and Zhu devise an ‘ion transport highway’ for solid-state batteries.

FOR IMMEDIATE RELEASE  June 22, 2017

CONTACT:
Katie Doyle
301 405 0379
khollan3@umd.edu

press release image

Current Li-ion batteries use a flammable liquid/polymer electrolyte, which has led to significant safety concerns as observed in the fatal Tesla Model S crash and Samsung S7 cellphone explosion last year. To that end, all-solid-state Li-ion chemistry, using ceramic-based super-ionic conductor (SIC) materials as a solid electrolyte, offers a promising next-generation battery. This battery will provide higher energy density and charging rate, in addition to improved stability (i.e. safety). However, very few SIC materials are able to transport Li+ fast enough for use as a solid electrolyte in solid-state batteries.

Yifei Mo (MSE Assistant Professor), Xingfeng He and Yizhou Zhu (both MSE Ph.D. students) performed quantum mechanical modeling of super-ionic conductor materials with the resolution of individual atoms to better understand how this material is able to quickly transport ions.

“Activating an ‘ion transport highway,’ if you will, is the key to making this material super-ionic – meaning, it has very high Li+ conductivity,” said Dr. Mo. “Our study revealed the unique physics of the fast ion diffusion in super-ionic conductors, which are highly distinctive from the classic diffusion model that standard textbooks teach.”

By tracking individual atoms in these materials, using supercomputer modeling, the group unraveled the underlying physics of the fast diffusion process in this unique super-ionic conductor material.

MSE Professor at UC Berkeley, Gerbrand Ceder, commented “This work provides another important step forward in understanding the origin of the very high Li conductivity in some solids, as it highlights the importance of high Li content in the material leading to more concerted motion.”

The implications of this study will boost materials research and development to enable solid-state batteries, leading to safer electronics; specifically, electric cars with a longer driving range and a potentially shorter charging time.

This research entitled, “Origin of fast ion diffusion in super-ionic conductors,” was published in Nature Communications on June 21, 2017 (DOI: 10.1038/ncomms15893).

About the A. James Clark School of Engineering

The University of Maryland’s A. James Clark School of Engineering is a premier program, ranked among the top 20 in the world. Located just a few miles from Washington, D.C., the Clark School is at the center of a constellation of high-tech companies and federal laboratories, offering students and faculty access to unique professional opportunities.

Our broad spectrum of academic programs, including the world’s only accredited undergraduate fire protection engineering program, is complemented by a vibrant entrepreneurial ecosystem, early hands-on educational experiences, and participation in national and international competitions.

The Clark School is leading research advancements in aerospace, bioengineering, robotics, nanotechnology, disaster resilience, energy and sustainability, and cybersecurity. From the universal product code to satellite radio, SMS text messaging to the implantable insulin pump, our students, faculty, and alumni are engineering life-changing innovations for millions. Learn more at www.eng.umd.edu.